Part Number Hot Search : 
ADP174 ECQBRF APTC80A 0HSR3 TM3071 NJW4190R HEF4538B MSD7804
Product Description
Full Text Search
 

To Download IRF7946PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  04/23/12 www.irf.com 1 directfet   power mosfet  fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  rohs compliant containing no lead, no bromide and no halogen applications  brushed motor drive applications  bldc motor drive applications  battery powered circuits  half-bridge and full-bridge topologies  synchronous rectifier applications  resonant mode power supplies  or-ing and redundant power switches  dc/dc and ac/dc converters  dc/ac inverters directfet  isometric  25 50 75 100 125 150 t c , case temperature (c) 0 50 100 150 200 i d , d r a i n c u r r e n t ( a ) limited by package dd g s s ordering information form quantity irf7946trpbf directfet mx tape and reel 4800 irf7946trpbf irf7946tr1pbf directfet mx tape and reel 1000 irf7946tr1pbf base part number package type standard pack complete part numbe r v dss 40v r ds(on) typ. 1.1m ? ? i d (silicon limited) 198a i d (package limited) 90a   

 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0.0 2.0 4.0 6.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 90a t j = 25c t j = 125c

 2 www.irf.com   mounted on minimum footprint full size board with metalized back and with small clip heatsink.  used double sided cooling , mounting pad with large heatsink.  t c measured with thermocouple mounted to top (drain) of part.   surface mounted on 1 in. square cu (still air).  
  with small clip heatsink (still air)    mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v t j operating junction and t stg storage temperature range avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj e as (tested) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r ?  ??? 55 r ?  12.5 ??? r ?  20 ??? c/w r ?  ??? 1.3 r ? max. 198
125
793 90 163 -55 to + 150 a c 85 see fig. 14, 15, 22a, 22b 20 0.77 static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.03 ??? v/c r ds(on) static drain-to-source on-resistance ??? 1.1 1.4 m ? 1.7 ??? m ? v gs( th) gate threshold voltage 2.2 3.0 3.9 v i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 0.67 ??? ? v gs = 20v v gs = -20v v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c v gs = 6.0v, i d = 72a conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1.0ma  v gs = 10v, i d = 90a v ds = v gs , i d = 150 a

 www.irf.com 3 s d g    calculated continuous current based on maximum allowable junction temperature. bond wire current limit is 90a. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.  
   repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.021mh r g = 50 ? , i as = 90a, v gs =10v.  i sd ? 90a, di/dt ? 1135a/ s, v dd ?? v (br)dss , t j ? 150c.  pulse width ? 400 s; duty cycle ? 2%.  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . when mounted on 1" square pcb (fr-4 or g-10 material). for recom mended footprint and soldering techniques refer to application note #an-994.
 ?       this value determined from sample failure population, starting t j = 25c, l= 0.021mh, r g = 50 ? , i as = 90a, v gs =10v. dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 91 ??? ??? s q g total gate charge ??? 141 212 nc q gs gate-to-source charge ??? 36 ??? q gd gate-to-drain ("miller") charge ??? 44 ??? q sync total gate charge sync. (q g - q gd ) ??? 97 ??? t d(on) turn-on delay time ??? 20 ??? ns t r rise time ??? 49 ??? t d(off) turn-off delay time ??? 54 ??? t f fall time ??? 41 ??? c iss input capacitance ??? 6852 ??? pf c oss output capacitance ??? 1046 ??? c rss reverse transfer capacitance ??? 735 ??? c oss eff. (er) effective output capacitance (energy related) ??? 1307 ??? c oss eff. (tr) effective output capacitance (time related) ??? 1465 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 96 a (body diode) i sm pulsed source current ??? ??? 793 a (body diode)  v sd diode forward voltage ??? 0.75 1.2 v dv/dt peak diode recovery  ??? 1.6 ??? v/ns t rr reverse recovery time ??? 49 ??? ns t j = 25c v r = 34v, ??? 50 ??? t j = 125c i f = 90a q rr reverse recovery charge ??? 74 ??? nc t j = 25c di/dt = 100a/ s  ??? 73 ??? t j = 125c i rrm reverse recovery current ??? 2.6 ??? a t j = 25c v gs = 0v, v ds = 0v to 32v  v gs = 0v, v ds = 0v to 32v  conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0 mhz i d = 90a, v ds =0v, v gs = 10v conditions v ds = 10v, i d = 90a v ds =20v i d = 90a t j = 25c, i s = 90a, v gs = 0v  integral reverse p-n junction diode. mosfet symbol showing the t j = 175c, i s = 90a, v ds = 40v i d = 30a r g = 2.7 ? v gs = 10v  v dd = 20v

 4 www.irf.com fig 3. typical output characteristics fig 5. typical transfer characteristics fig 6. normalized on-resistance vs. temperature fig 4. typical output characteristics fig 8. typical gate charge vs. gate-to-source voltage fig 7. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v ? 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v ? 60 s pulse width tj = 150c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 2 3 4 5 6 7 8 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 150c v ds = 10v ? 60 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 1.6 1.6 1.8 0.6 0.8 1.0 1.2 1.4 1.6 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 90a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 20 40 60 80 100 120 140 160 180 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 90a

 www.irf.com 5 fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy fig 13. typical on-resistance vs. drain current 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 1.0 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 10msec 1msec operation in this area limited by r ds (on) 100 sec dc limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature ( c ) 40 41 42 43 44 45 46 47 48 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 1.0ma 0 5 10 15 20 25 30 35 40 45 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 e n e r g y ( j ) v ds = 0v to 32v 0 200 400 600 800 1000 i d , drain current (a) 0.0 2.0 4.0 6.0 8.0 10.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) v gs = 5.5v v gs = 6.0v v gs = 7.0v v gs = 8.0v v gs =10v

 6 www.irf.com fig 14. maximum effective transient thermal impedance, junction-to-case fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 125c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 125c and tstart =25c (single pulse) 25 50 75 100 125 150 starting t j , junction temperature (c) 0 10 20 30 40 50 60 70 80 90 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 90a

 www.irf.com 7 
      fig 17. threshold voltage vs. temperature    !"             !"   -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 150 a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 12 14 16 i r r m ( a ) i f = 54a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 12 14 16 i r r m ( a ) i f = 90a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 50 100 150 200 250 300 350 q r r ( n c ) i f = 54a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 50 100 150 200 250 300 350 400 q r r ( n c ) i f = 90a v r = 34v t j = 25c t j = 125c

 8 www.irf.com fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 22. #    for n-channel hexfet   power mosfets  
     ????? 
     ????     ????

         p.w. period di/dt diode recovery dv/dt ripple ? 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period $   !"  # $%#&'&% $ + - + + + - - -       ???      !  ???   " #$## ???        %  && ??? #$##'$

   d.u.t. v ds i d i g 3ma v gs .3 ? f 50k ? .2 ? f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f  ( ) ???? *  %   ???????      '(  + -  

 www.irf.com 9 
            ! %&  '() *+, " "!-. ,%& !   --  ,    ."   
   

 

  
  g s g=gate d=drain s=source s d d d d

 10 www.irf.com directfet  part marking 
            ! %&  '() *+, " "!-. ,%&!    --  ,    ."   
   

 

  
  gate marking part number logo batch number date code line above the last character of the date code indicates "lead-free" code a b c d e f g h j k l m p 0.017 0.028 0.007 0.040 0.095 0.156 0.028 0.018 0.028 max 0.250 0.38 0.59 0.08 0.88 2.28 3.85 0.68 0.35 0.68 min 6.25 4.80 0.42 0.70 0.17 1.02 2.42 3.95 0.72 0.45 0.72 max 6.35 5.05 0.015 0.023 0.003 0.090 0.035 0.152 0.027 0.027 0.014 min 0.189 0.246 metric imperial dimensions 1.38 1.42 0.80 0.84 0.056 0.054 0.033 0.031 r 0.03 0.08 0.001 0.003 dimensions are shown in millimeters (inches) 0.199

 www.irf.com 11 directfet  tape & reel dimension (showing component orientation).  
   

 

  
  note: controlling dimensions in mm code a b c d e f g h imperial min 0.311 0.154 0.469 0.215 0.201 0.256 0.059 0.059 max 8.10 4.10 12.30 5.55 5.30 6.70 n.c 1.60 mi n 7.90 3.90 11.90 5.45 5.10 6.50 1.50 1.50 metric di mensi ons max 0.319 0.161 0.484 0.219 0.209 0.264 n. c 0.063 note: controlling dimensions in mm std reel quantity is 4800 parts. (ordered as irf7946trpbf). for 1000 parts on 7" reel, order irf7946tr1pbf reel dimensions max n.c n.c 0.520 n.c n.c 0.724 0.567 0.606 imperial min 330.0 20.2 12.8 1.5 100.0 n.c 12.4 11.9 standard option (qty 4800) code a b c d e f g h max n.c n.c 13.2 n.c n.c 18.4 14.4 15.4 min 12.992 0.795 0.504 0.059 3.937 n.c 0.488 0.469 metric min 6.9 0.75 0.53 0.059 2.31 n.c 0.47 0.47 tr1 option (qty 1000) max n.c n.c 12.8 n.c n.c 13.50 12.01 12.01 min 177.77 19.06 13.5 1.5 58.72 n.c 11.9 11.9 metric max n.c n.c 0.50 n.c n.c 0.53 n.c n.c imperial

 12 www.irf.com data and specifications subject to change without notice. ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 04/2012 / 0 ,   ., 1   ,23.4 !4333, -   , . //5"!6 ,  "-..! ! ! !6 -    1   , , , ! , - 4!4333, -3!   ///'.  ,7&& !- ,   ms l 3 (per je de c j-s t d-020d ??? ) rohs compliant (per jedec jesd47f ??? guidelines) yes qualification information ? consumer ?? qualification level dfet 1.5 moisture sensitivity level


▲Up To Search▲   

 
Price & Availability of IRF7946PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X